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We examine random matrix systems driven by an external field in view of optimal control theory �OCT�. By
numerically solving OCT equations, we can show that there exists a smooth transition between two states
called “moving bases” which are dynamically related to initial and final states. In our previous work �J. Phys.
Soc. Jpn. 73, 3215 �2004�; Adv. Chem. Phys. 130A, 435 �2005��, they were assumed to be orthogonal, but in
this paper, we introduce orthogonal moving bases. We can construct a Rabi-oscillation-like representation of a
wave packet using such moving bases, and derive an analytic optimal field as a solution of the OCT equations.
We also numerically show that the newly obtained optimal field outperforms the previous one.
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I. INTRODUCTION

Controlling atomic and molecular processes by laser
fields is one of the current topics in physics and chemistry
�1�. There are various control schemes applied to such pro-
cesses: �-pulses �2�, nonadiabatic transitions �3�, adiabatic
rapid passage �4�, stimulated Raman adiabatic passage �STI-
RAP� �5–7�, pulse-timing control �8�, and coherent control
�9�, etc. These strategies are known to work when the system
to be controlled is rather simple or small. However, the sys-
tem can be complex �10� when we deal with highly excited
states in large molecules or mesoscopic devices driven by
electromagnetic fields. Such a “complex” system in the limit
of strong chaos is modelled by a random matrix Hamiltonian
with a time-dependent external field �11�, and the dynamics
is well represented by multilevel-multilevel transitions with
random interactions among energy levels. Although there are
many works on the statistical properties �12–16� as well as
the semiclassical properties �17–19� of eigenvalues under the
variation of an external parameter, few works have been pub-
lished on the dynamical properties of such systems except
several studies on nonadiabatic processes �20,21�.

Even for such complex systems, there exist mathematical
results showing complete controllability �22,23� of general
quantum systems with discrete spectrum under certain con-
ditions. The existence of an optimal field is proved by opti-
mal control theory �OCT� �24�, which is a powerful tool to
obtain an optimal field and has been studied for various dy-
namical systems �25,26�. For the purpose of steering quan-
tum states, many numerical schemes with monotonically
convergent algorithms �1,27,28� have been developed based
on OCT. In general, OCT for quantum states provides sets of
nonlinear differential equations �OCT equations� which are
solved by iterative procedures. For complex systems with
many degrees of freedom, however, the optimal field often

becomes too complicated to analyze the dynamical processes
involved. In addition, the computational cost becomes sig-
nificantly heavy when we apply OCT to realistic problems
with many degrees of freedom. Analytic approaches can be a
good strategy to complement this annoying situation.

One such analytic method for multilevel control problems
is STIRAP �5–7�. Though it can accomplish perfect control,
it assumes an intermediate state coupled to initial and target
states, and uses a pair of external fields with slowly varying
amplitudes. Recently, we have proposed another analytic op-
timal field �29,30� which induces a “direct” transition be-
tween random vectors in a random matrix system. The key
idea of this approach is to describe the optimally controlled
dynamics as a Rabi-like oscillation �2�, and our optimal field
can be interpreted as a generalized �-pulse �29�. Though the
derivation and applicability of our analytic optimal field have
been detailed in Ref. �30�, there exists deficiency in our pre-
vious formula because of several �unnecessary� assumptions
for simplification. In this paper, we rederive an analytic op-
timal field with less numbers of assumptions and reexamine
its applicability to random matrix systems.

This paper is organized as follows. In Sec. II, we numeri-
cally investigate the multistate control problem by OCT to
show that, in some cases, the optimal field induces a smooth
transition. According to this observation, in Sec. III, we in-
troduce a Rabi-like representation of the controlled state with
some modifications compared to our previous result �29,30�.
Employing this representation, we obtain a new analytic ex-
pression of the optimal field. In Sec. III E, we confirm the
applicability of the analytic field through the numerical inte-
gration of the Schrödinger’s equation for random matrix sys-
tems. Finally, in Sec. IV, we summarize this paper and give
some discussions on the control problem of quantum chaos
systems. We mention some technical details in the Appendix.

II. OPTIMAL CONTROL IN RANDOM MATRIX
SYSTEMS

We present numerical results of controlled dynamics
driven by an optimal field to see what kinds of dynamics are
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involved in random matrix systems. The random matrix
Hamiltonian driven by a time-dependent external field ��t� is
written as

H���t�� = H0 + ��t�V , �1�

where H0 and V are random matrices subject to a certain
universality class �11�, i.e., Gaussian orthogonal ensemble
�GOE�, Gaussian unitary ensemble �GUE�, etc.

It is well known that a strongly chaotic system does not
have any constant of motion except the total energy �10�,
where the typical quantum states are random vectors. Thus, it
is appropriate to choose initial and target states as random
vectors. If we choose a certain orthonormalized basis, a ran-
dom vector in N-dimensional Hilbert space is represented by
a set of random complex numbers �cj�. If such a vector has
neither special symmetry nor correlation, only the constraint
imposed is the normalization condition,

�
j=1

N

�cj�2 = 1. �2�

Then, the normalized probability density for a variable
y= �cj�2 is given by

PN�y�dy = N exp�− Ny�dy , �3�

when N is sufficiently large �11�.
The actual procedure to numerically obtain an optimal

field is as follows: The Hamiltonian �1� is constructed by
generating two random matrices, H0 and V, with N�N ele-
ments, where the scales of them are determined so that the
averaged eigenvalue-spacing �E of H0 and the variance �V
of off-diagonal elements of V are both unity. Next, we define
an initial state ��0	 and a target state ��T	 as random vectors
satisfying the distribution �3�. Then, for a fixed target time T,
the optimal field ��t� is obtained by solving the OCT equa-
tions which are detailed in Sec. II A.

A. Zhu-Botina-Rabits scheme of OCT

There are many effective methods to solve OCT equations
for quantum systems �1�. In this section, we use a method
introduced by Zhu, Botina, and Rabitz �27� �ZBR-OCT�. Our
goal is to determine the optimal external field ��t� by which
a given initial state ��0	 is steered to a given target state ��T	
at a target time T. According to ZBR-OCT, we introduce a
functional J���t� , ���t�	�,

J���t�, ���t�	� = J0 − �

0

T

���t��2dt

− 2 Re����T���T	

0

T

���t��
�

�t

−
H���t��

i	
���t�	dt , �4�

where T and � are given parameters representing the target
time and the penalty factor, respectively. The quantum state
���t�	 satisfies the initial condition, ���0�	= ��0	. The first

term in the right-hand side is the final overlap,

J0 = ����T���T	�2. �5�

The second term is the penalty term which minimizes the
amplitude of the optimal field. In the third term, a Lagrange
multiplier ���t�	 is introduced to give a constraint that ���t�	
satisfies Schrödinger’s equation,

i	
d

dt
���t�	 = H���t�����t�	 . �6�

On the other hand, Schrödinger’s equation for ���t�	 is

i	
d

dt
���t�	 = H���t�����t�	 , �7�

and the boundary condition ���T�	= ��T	 is obtained by “dif-
ferentiating” the functional with respect to ���t�	 and ���T�	.
For the Hamiltonian �1�, the variation of J with respect to
��t� gives an expression for the optimal field,

��t� =
1

�	
Im����t����t�	���t��V���t�	� . �8�

This is a self-consistent expression for the optimal field, and
to obtain its actual value, we must simultaneously solve the
nonlinear coupled equations,�6�–�8� �OCT equations�. ZBR-
OCT is one such method which numerically solves the OCT
equations with iterative procedures �27�.

B. Numerical results

We show controlled dynamics driven by numerically ob-
tained optimal fields for a 128�128 GOE random matrix
Hamiltonian. The quantum state �
�t�	 with the initial condi-
tion �
�0�	= ��0	 evolves according to Schrödinger’s equa-
tion �6�. We have chosen H0 and V so that �E=�V=1. In
other words, the energy values are shown in unit of �E, and
the unit of time is 	 /�E. Then, the field strength ��t� is
shown in unit of �E /�V.

In Fig. 1, we show the result with the parameters T=10
and �=1. The target time T=10 is comparable to the mini-
mum time �0�2� �	 /�E� which is necessary to resolve
each energy level from its adjacent levels. In Fig. 1�a�, the
functional values J0 �5� and J �4� are shown as the solid and
dashed curves, respectively. They appear to converge after
several 10 steps. The final overlap J0 is 0.89 after 100 itera-
tions. The optimal field ��t� is shown in Fig. 1�b� as well as
its Fourier spectrum in Fig. 1�c�. Figure 1�d� shows the time
evolution of the overlap ���T �
�t�	�2 with its magnification
near the target time in the inset.

Figure 2 shows the result obtained for the parameters
T=100 and �=10, which is the case of a relatively long
target time compared to �0. The values of J0 and J, the opti-
mal field ��t�, its Fourier spectrum, and the overlap
���T �
�t�	�2 are shown as in Fig. 1. In this calculation, the
final overlap J0 is 0.93 after 100 iterations.

In both cases, the overlap ���T �
�t�	�2 as a function of
time t remains small until t is close to the target time T. In
multistate quantum dynamics, even if no external field is
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applied, an autocorrelation function �
�0� �
�t�	 can rapidly
decay by dephasing among dynamical phases of H0. This is
the reason why the overlaps ��T �
�t�	 in Fig. 1�d� and Fig.
2�d� rapidly grow up to the final values near t=T. In other
words, ��T �
�t�	 decays quickly when t deviates from T.

C. Observation of smooth transitions

Since we want to concentrate on transitions induced by
��t� only, it is necessary to remove the contribution from
dephasing by H0. This is nothing but the procedure of the
interaction picture in quantum mechanics �31�. We define
time-dependent quantum states related to ��0	 and ��T	 by

��0�t�	 = Û0�t,0���0	, ��0�t�	 = Û0�t,T���T	 , �9�

where Û0�t2 , t1� represents a propagator from t= t1 to t= t2

with respect to the unperturbed Hamiltonian H0. We call
these states “moving bases.” In the following, we analyze the
optimally controlled dynamics through these time-dependent
states.

If we introduce projection operators associated with these
states by

P̂��t� = ��0�t�	��0�t��, P̂��t� = ��0�t�	��0�t�� , �10�

the probabilities such that �
�t�	 is found in these states are
written as

�P̂��t�	 � �
�t��P̂��
�t�	 , �11�

�P̂��t�	 � �
�t��P̂��
�t�	 . �12�

These values are more appropriate quantities to observe the
multilevel-multilevel transition dynamics compared to the
bare overlap ���T �
�t�	�2 as shown below. In addition, we
introduce another projection operator

P̂�+��t� =
P̂��t� + P̂��t� − P̂��t�P̂��t� − P̂��t�P̂��t�

1 − tr�P̂��t�P̂��t��
, �13�

which represents projection onto a subspace defined by a
linear superposition of ��0�t�	 and ��0�t�	. We can prove

that this is a projection operator by using 1−tr�P̂��t�P̂��t��
=1− ���0 ��0	�2 and P̂��t�P̂��t�P̂��t�= ���0 ��0	�2P̂��t�, etc.
Then, the quantity,

�P̂�+��t�	 � �
�t��P̂�+��t��
�t�	 , �14�

represents the probability that the quantum state �
�t�	 is
found on the subspace.

In Figs. 3�a� and 3�b�, we show the overlaps �probabili-

ties�, �P̂��t�	, �P̂��t�	, and �P̂�+��t�	, calculated from the re-
sults in Figs. 1 and 2. All the curves in Fig. 3�b� are smoother

than those in Fig. 3�a�. It is also worth noting that �P̂�+��t�	
stays close to unity for all the time in Fig. 3�b�.

From other ZBR-OCT calculations for random matrix
systems, we found that the ZBR optimal field induces a tran-
sition from ��0	 to ��T	 nearly within a subspace spanned by
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FIG. 1. Numerical results of controlled dynamics between random vectors in a 128�128 GOE random matrix system. The optimal field
is obtained through the iterative procedure given by Zhu, Botina, and Rabitz �27� for the target time T=10 and the penalty factor �=1. �a�
Convergence property of functional values, J0 �solid curve� and J �dashed curve�, as a function of the iteration step. �b� Optimal external field
��t�. �c� Power spectrum of ��t�. �d� Time evolution of the overlap ���T �
�t�	�2 �the magnified curve near t=T is shown in the inset�.

ANALYTIC APPROACH FOR CONTROLLING QUANTUM… PHYSICAL REVIEW E 75, 036219 �2007�

036219-3



��0�t�	 and ��0�t�	 when the target time T is sufficiently large.
Based on this finding, we will develop an analytic approach
for the optimal field in the next section.

III. ANALYTIC APPROACH FOR CONTROLLED
DYNAMICS

The Rabi oscillation in a two-level system has been stud-
ied in detail �2�. According to such previous works, we can
represent a wave function as a linear combination of two
eigenstates ��1	 and ��2	 with eigenenergies E1 and E2,

�
�t�	 = A�t���1	eE1t/i	 + B�t���2	eE2t/i	. �15�

Here the coefficients A�t� and B�t� are slowly oscillating
functions with a Rabi frequency under the rotating-wave ap-
proximation �RWA� �2�.

In this section, we show, under certain conditions, that a
Rabi-like description becomes valid even for multilevel
quantum systems where the wave function is described by
the time-dependent states in Eq. �9�. We call these states
“moving bases” instead of eigenstates. This is equivalent to
considering the case where the controlled state remains in the
subspace spanned by these moving bases over a whole pe-
riod of the dynamics. With the help of OCT, we conversely
obtain an analytical expression for the optimal field to induce
the smooth transition we found in Fig. 3 for the multilevel
dynamics.

A. Rabi-like representation

In the preceding section, we have defined the moving
bases ��0�t�	 and ��0�t�	 �9� in order to observe smooth tran-
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FIG. 2. The same as Fig. 1 except that the target time is longer �T=100� and the penalty factor is larger ��=10�.
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FIG. 3. Time evolution of the overlaps �P̂��t�	 �solid curve�, �P̂��t�	 �dashed curve�, and �P̂�+��t�	 �thick curve� defined by Eqs. �11�,
�12�, and �14�. �a� and �b� correspond to Fig. 1 �T=10 and �=1� and Fig. 2 �T=100 and �=10�, respectively.
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sitions in OCT calculations. Unlike the two-level case, how-
ever, these states are not always orthogonal to each other.
The inner-product between them is written in the form

��0�t���0�t�	 = ��0�Û�0,T���T	 = iei sin � , �16�

with 0���� /2 and 0��2�. Note that the inner prod-
uct �16� does not depend on t, i.e., constant in time, despite
that the moving bases ���0�t�	 and ��0�t�	� rapidly change
their “directions” according to the Schrödinger’s equations.

In our previous works �29,30�, we have used an assump-
tion that �=0. Actually we can remove this assumption by
introducing an orthogonal pair of the moving bases as
�Schmidt decomposition�

��̃0�t�	 = ��0�t�	 , �17�

��̃0�t�	 =
��0�t�	 − iei sin ���0�t�	

cos �
. �18�

These are our new moving bases which are orthogonal to
each other and will be used below.

We introduce a Rabi-like representation of the quantum
state ���t�	 with an initial condition ���0�	= ��0	 by a linear

combination of the new moving bases ��̃0�t�	 and ��̃0�t�	,

���t�	 = A�t���̃0�t�	 + B�t���̃0�t�	 . �19�

The coefficients, A�t� and B�t�, must satisfy a normalization
condition,

�A�t��2 + �B�t��2 = 1. �20�

If this representation is valid, A�t� and B�t� satisfy the fol-
lowing differential equations:

d

dt
A�t� =

��t�
i	

���̃0�t��V��̃0�t�	A�t� + ��̃0�t��V��̃0�t�	B�t�� ,

�21�

d

dt
B�t� =

��t�
i	

���̃0�t��V��̃0�t�	A�t� + ��̃0�t��V��̃0�t�	B�t�� .

�22�

B. Rotating wave approximation

The rotating-wave approximation �RWA� means dropping
rapidly oscillating terms in differential equations �2�. Since
RWA is applicable to nondegenerate multilevel systems �6�,
we will apply RWA to Eqs. �21� and �22� to solve them
approximately.

To justify the use of RWA, we introduce three integrals,

I��t� =
1

	



0

t

��t���̃0�t���V��̃0�t��	dt�, �23�

I��t� =
1

	



0

t

��t���̃0�t���V��̃0�t��	dt�, �24�

I��t� =
1

	



0

t

��t���̃0�t���V��̃0�t��	dt�. �25�

Note that the generalized pulse area �29� is represented by
2�I��T��. The numerical results in Figs. 1 and 2 are used to
calculate these integrals explicitly, and their absolute values
are plotted in Fig. 4. Since I��t� and I��t� are almost zero, it
is appropriate to assume that

I��t� = I��t� = 0, �26�

which corresponds to RWA. Furthermore, for a long target
time, we can employ the following form:

I��t� = �t , �27�

which means that, with use of RWA, the integrand in Eq.
�23� is nearly constant in time.

Under these approximations �26� and �27�, the differential
equations, �21� and �22�, are simplified to

d

dt
A�T� = − i�B�t�,

d

dt
B�T� = − i�*A�t� . �28�

For the initial value problem with the conditions, A�0�=1
and B�0�=0, we obtain a solution,

A�t� = cos����t�, B�t� = −
i���
�

sin����t� . �29�

Defining the phase of � as
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FIG. 4. Time evolution of �I��t�� �thick line�, �I��t�� �solid line�, and �I��t�� �dashed line�, defined by Eqs. �23�–�25�, respectively. �a� and
�b� correspond to Fig. 1 �T=10 and �=1� and Fig. 2 �T=100 and �=10�, respectively.
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�

���
= ei, �30�

we finally obtain

���t�	 = ��̃0�t�	cos����t� − ie−i��̃0�t�	sin����t�

=
cos����t + ��

cos �
��0�t�	 −

ie−i sin����t�
cos �

��0�t�	 .

�31�

This state oscillates with the frequency ��� between ��̃0�t�	
and ��̃0�t�	, as well as between ��0�t�	 and ��0�t�	.

C. Analytic field

According to the ZBR-OCT scheme in Sec. II A, the op-
timal external field is represented by Eq. �8� given the for-
ward evolving state ���t�	 and the backward evolving state
���t�	 are prepared with the boundary conditions,

���0�	 = ��0	, ���T�	 = ��T	 . �32�

Under the approximations �26� and �27�, ���t�	 has been al-
ready given in Eq. �31�, and ���t�	 is written as

���t�	 = − iei��̃0�t�	sin�����t − T� − ��

+ ��̃0�t�	cos�����t − T� − �� �33�

=−
iei sin�����t − T��

cos �
��0�t�	

+
cos�����t − T� − ��

cos �
��0�t�	 . �34�

The overlap between these states is

���t����t�	 = iei sin����T + �� . �35�

Substituting Eqs. �31� and �33� into ���t�	 and ���t�	 in Eq.
�8�, we obtain the external field,

��t� =
sin�2����T + ���

2�	
Re�ei��̃0�t��V��̃0�t�	� . �36�

By calculating I��T� for the external field �36� and using Eq.
�27� at t=T, we obtain an equation for �,

� =
sin�2����T + ���

4�	2 �eiV̄2 + e−iW̄2� , �37�

where V̄2 and W̄2 are defined by averages of transition ele-
ments,

V̄2 =
1

T



0

T

���̃0�t��V��̃�t�	�2 dt , �38�

W̄2 =
1

T



0

T

���̃0�t��V��̃�t�	�2 dt . �39�

Note that �W̄2� becomes small compared to V̄2 when the sys-
tem is sufficiently large without special symmetry �see Eqs.

�A20� and �A21��. Then, we obtain an equation for ��� with
use of Eq. �30�,

��� =
V̄2 sin�2����T + ���

4�	2 . �40�

The solutions of this equation are obtained from the cross-
ing points between y=x /T and y= �K /2�sin�2�x+��� where

x��� �T and K� V̄2 / �2�	2�.
To illustrate the effectiveness of our result, we calculate

the final overlap J0 from Eq. �35�,

J0 = ����t����t�	�2 = sin2����T + �� �41�

and the average amplitude of the optimal field from Eq. �36�,

�̄ =�1

T



0

T

���t��2dt �
�2	���

V̄
. �42�

These estimates match well with the numerical results
�squares and circles� as shown in Figs. 5 and 6. Since the
inner product between N-dimensional random complex vec-
tors is ��� /4N as an average �see Eq. �A19��, we have used
���0�t� ��0�t�	�=sin ���� /4N �solid lines�. For comparison,
we also show the results for �=0 �dashed lines�, which cor-
respond to our previous results �29,30�. It is obvious that the
new analytic field outperforms the previous one.

D. Perfect control

In the ZBR-OCT scheme �Sec. II A�, we need a finite
value of the penalty factor � in order to avoid numerical
unstability. In the analytic approach, however, the limit
�→0 can be taken safely in Eq. �40�. In this case, the solu-
tion of Eq. �40� becomes

��� → �m =
1

T
��

2
− � + m� , �43�

where m is an integer. It is easily shown that this gives
J0=1 from Eq. �41�. From Eqs. �36� and �40�, the external
field is obtained as

��t� =
2	�m

V̄2
Re�ei��̃0�t��V��̃0�t�	� . �44�

Since this equation does not contain �, it is different from
other noniterative optimal fields �32�. It can be shown that
this field actually achieves perfect control in the limit of
T ,N→�. We give the proof in the Appendix.

E. Application of the analytic field

Although it is theoretically exact for T ,N→�, our ap-
proach is applicable to the cases with finite T and N as al-
ready given in Figs. 5 and 6.

In Fig. 7, we show time evolutions of the overlaps with
T=10 �a� and T=100 �b�. The initial and target states are the
same as in Fig. 3. Unlike the results by OCT �Fig. 3�, the
probability on the subspace spanned by ��0�t�	 and ��0�t�	
decreases monotonically. This is because the analytic field
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�44� was obtained under the conditions T ,N→� while the
numerical calculations were performed for finite T and N.

The performance of the analytic optimal field can be eas-
ily seen by plotting the final overlap J0 for various values of
N and T �Fig. 8�. The error bars in this figure represent the
normal deviation of J0 obtained from calculations for 100
different samples of the Hamiltonian and state vector. By
comparing with our previous result, Fig. 1 in Ref. �29�, our
new analytic field outperforms the previous one for the in-
termediate T and N as expected. This is a nice feature when
we consider the application of this method to nonlimiting
cases.

IV. SUMMARY AND DISCUSSION

In this paper, we have proposed an analytic approach for
controlling quantum states in random matrix systems. From
the analysis of OCT calculations, we showed that optimally
controlled states remain on a subspace spanned by two
“moving bases” when the target time and system size are
both sufficiently large. According to this observation, we de-
veloped a new method to solve OCT equations and to obtain
an analytic expression for the optimal field. Finally, it was
numerically shown that the analytic field actually steers the
quantum states in random matrix systems. The difference
from our previous result is that we have taken new moving
bases which are exactly orthogonal, and the newly obtained

analytic field outperforms the previous one for the interme-
diate target time and system size.

Our analytic field �44� is a generalized �-pulse �29� in
multilevel systems, which is realized because of certain ran-
domness in the elements of the Hamiltonian and state vec-
tors. The amplitude of the pulse becomes smaller when the
target time T is larger since an effective pulse area should be
a constant � �29�. Although our controlled dynamics seem to
be antithetical to the molecular processes induced by intense
laser fields �33,34�, this does not necessarily mean that our
approach is not applicable to those systems. This is because
such dynamics driven by the intense laser field can be in-
cluded in the “unperturbed” Hamiltonian H0. If the system
becomes strongly chaotic by the laser field, such a situation
is even preferable for the prerequisite of our approach using
random matrix Hamiltonians.

The quantum targeting problem studied in this paper was
solved analytically for random matrix systems, while it is
known that classical targeting problems �35,36� are difficult
to be solved for strongly chaotic cases. This is because there
is sensitivity of trajectories with respect to initial values. Our
result for quantum systems thus seems to break the naive
quantum-classical correspondence. It is important to clarify
how the correspondence is recovered in the semiclassical
limit �37,38�.

Recently Gong and Brumer showed that coherent control
works for a quantized kicked rotor �39,40�, a typical “quan-
tum chaos” system, whereas our concern was optimal control
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of quantum states in random matrix systems. Optimal control
for quantum chaos systems, especially weakly chaotic sys-
tems, is another interesting subject which should be pursued
�30,41�.
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APPENDIX: EIGENSTATE REPRESENTATION

Preliminary

Though our results in the main text do not depend on a
particular representation, in this appendix, we describe the

controlled dynamics and the analytic optimal field Eq. �44�
by using the eigenstate representation of H0, and prove that
perfect control is achieved by Eq. �44�.

We introduce eigenstates �� j	 of H0 corresponding to ei-
genvalues Ej where ��� j	� constitute an orthonormal basis
set. The initial and target states

��0	 = �
j=1

N

cj�� j	, ��T	 = �
j=1

N

dj�� j	 �A1�

are represented by random complex numbers �cj� and �dj�
satisfying normalization conditions,

�
j=1

N

�cj�2 = �
j=1

N

�dj�2 = 1. �A2�

The matrix elements of V are defined by using ��� j	�,

Vjk = �� j�V��k	 . �A3�

These quantities, �cj�, �dj�, and �Vjk�, are assumed to be un-
correlated among them.

The analytic optimal field

The moving bases, Eq. �9�, satisfying ���0�	= ��0	 and
���T�	= ��T	 can be written as

��0�t�	 = �
j=1

N

cj�� j	eEjt/i	, �A4�

��0�t�	 = �
j=1

N

dj�� j	eEj�t−T�/i	, �A5�

where T represents the target time. In general, these states are
not orthogonal to each other as shown in Eq. �16�, and the
orthogonal �new� moving bases, Eqs. �17� and �18�, are con-
structed as

��̃0�t�	 = �
j=1

N

cj�� j	eEjt/i	, �A6�
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and V� and two random vectors ���0	 and ��T	� for a system size N.
If we choose a target time T, the analytic field is given by Eq. �44�.
The quantum state �
�t�	 at t=T is obtained by numerical integra-
tion of Schrödinger’s equation under the field with the initial con-
dition �
�0�	= ��0	. Finally, the final overlap J0 is calculated by
���T �
�T�	�2. Each curve in the figure is obtained as an ensemble
average over 100 different realizations of random numbers. Com-
pare this with Fig. 1 in the previous study �29� �only the data of
N=32 is shown as a dotted curve in this figure for comparison�.
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��̃0�t�	 = �
j=1

N
dje

−EjT/i	 − ieicj sin �

cos �
�� j	eEjt/i	

� �
j=1

N

d̃j�� j	eEjt/i	. �A7�

Substituting these states into Eq. �44�, we obtain the eigen-
state representation of the analytic optimal field,

��t� =
2	�m

V̄2
Re�ei�

j=1

N

�
k=1

N

d̃j
*Vjkck exp� �Ek − Ej�t

i	
� .

�A8�

Sum of random variables

Suppose a probability variable Y is defined by a sum of
independent probability variables Xj �j=1, . . . ,n�,

Y = X1 + X2 + ¯ + Xn, �A9�

with an expectation M�Xj�=MX ��0� and a variance
�2�Xj�=�X

2 . When n is sufficiently large, it is known from the
central limit theorem that Y is normally distributed. The ex-
pectation and variance are

M�Y� = nMX, �2�Y� = n�X
2 . �A10�

Then, the expectation nMX can be used as an approximate
value of Y since the relative standard deviation

�rel �
��2�Y�
M�Y�

=
�X

MX
�n

� O�1/�n� �A11�

vanishes for n→�.
Using the above basic knowledge, we estimate approxi-

mated values for sums of Vkj, cj, and d̃k in the following. The

coefficients cj and d̃j are independent random numbers sub-
ject to the distribution function �3�, i.e.,

M��cj�2� = M��d̃j�2� =
1

N
, �A12�

�2��cj�2� = �2��d̃j�2� =
1

N2 . �A13�

For large N, we obtain

�
j=1

N

�Vkj�2�cj�2 � NM��Vkj�2�cj�2� = M��Vkj�2� + O�1/�N� ,

�A14�

�
k=1

N

�d̃k�2�Vkj�2 � NM��d̃k�2�Vkj�2� = M��Vkj�2� + O�1/�N� ,

�A15�

where we have used a basic relation

M�X1X2 ¯ Xn� = M�X1�M�X2� ¯ M�Xn� �A16�

for independent probability variables Xj.

Applying the central limit theorem to a sum of complex
variables Zn=z1+z2+ ¯ +zn�Xn+ iYn with M�zj�=0 and
M��zj�2�=�z

2, we have

P�Xn�P�Yn�dXndYn =
1

�n�z
2 exp�−

Xn
2 + Yn

2

n�z
2 dXndYn.

�A17�

Then, the average magnitude of �Zn� can be calculated as

M��Zn�� =
 �Zn�P�Xn�P�Yn�dXndYn =
��n�z

2

2
.

�A18�

From this relation, the inner product, Eq. �16�, is estimated
as

���0�t���0�t�	� �
��NM��cj�2�dj�2�

2
=� �

4N
. �A19�

In the same manner, the average transition elements �38�
and �39� are estimated as

V̄2 = ��
j

cj
*Vjjd̃j�2

+ �
j

�
k�j

�cj
*Vjkd̃k�2 � M��Vkj�2� + O�1/N� ,

�A20�

W̄2 = ��
j

cj
*Vjjd̃j2

+ 2�
j

�
k�j

cj
*ck

*�Vjk�2d̃jd̃k � O�1/N� ,

�A21�

in the limit T→�. Thus, we can ignore W̄2 for T, N→�.

Controlled state

We give a proof that a quantum state driven by the ana-
lytic field, Eq. �44� or �A8�, actually shows a smooth transi-
tion between the initial and target states. We assume that the
size N of the random matrix Hamiltonian H0 and the target
time T are both large enough.

To see the dynamics induced by the field, we represent a
quantum state in the eigenstate representation,

�
�t�	 = �
j

aj�t��� j	eEjt/i	, �A22�

which satisfies the initial condition �
�0�	= ��0	. From the
Schrödinger’s equation driven by the optimal field �A8�, we
obtain the following differential equations for aj�t�:

ȧk�t� = − i�
j�k

�kjaj�t� , �A23�

where �kj is defined by

�kj =
�m�Vkj�2

V̄2
�cj

*d̃k + d̃j
*ck� , �A24�

and we have used the rotating-wave approximation. We write
ak�t� in the following form:
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ak�t� = Ak cos �mt + Bk sin �mt , �A25�

and Ak and Bk are determined as

Ak = ck, Bk = − i�
j�k

�kj

�m
cj , �A26�

from the initial conditions ak�0�=ck and �A23�.
Using the relations �A14� and �A15�, we obtain

�
j�k

�kj

�m
cj = d̃k�

j�k

�Vkj�2�cj�2

V̄2
+ ck�

j�k

�Vkj�2cjd̃j
*

V̄2
� d̃k + O�1/N� ,

�A27�

�
j�k

�kj

�m
d̃j = d̃k�

j�k

�Vkj�2cj
*d̃j

V̄2
+ ck�

j�k

�Vkj�2�d̃k�2

V̄2
� ck + O�1/N� .

�A28�

Substituting �A27� into �A25�, we obtain

ak�t� = ck cos �mt − id̃k sin �mt , �A29�

and the right-hand side of the differential equation �A23�
becomes

− i�
j�k

�kjaj�t� = − �m�ck sin �mt + id̃k cos �mt�

�A30�

with use of �A27� and �A28�. Since Eq. �A30� is exactly the
same as ȧk�t�, we have confirmed that �A29� is the solution
for the Schrödinger’s equation driven by the analytical opti-
mal field.

The final expression �A29� shows that each ak�t� smoothly

changes its value from ck at t=0 to d̃k at t=T as expected,
and the overlap between �
�t�	 and ��0�t�	 is easily calculated
as

��0�t��
�t�	 = − i sin �mt . �A31�

This shows ���T�
�T�	 � =1, i.e., perfect control is accom-
plished at the target time T.
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